

TAE32G5800 系列

勘误手册 Errata Sheet

版本号: Rev 1.12 修订日期: 2024年4月15日

l TAE32G5800 芯片限制	2
1.1 CAN 使用限制	
1.2 HRPWM 使用限制	
1.3 ADC 使用限制	
1.4 UART 使用限制	
版太历史	9

1 TAE32G5800 芯片限制

1.1 CAN 使用限制

1.1.1 CANFD 数据帧 DLC 使用限制(适用于 B 版、C 版)

现象描述

作为发送机时,使用 CANFD 时,当发送 dlc=0 的 fd data/fd ext data 帧时:

- 1. ISO 协议下, dlc=0 时, stuffcnt 域的第一个固定填充位固定为 0 了, 此时需要是的 1;
- 2. 非 ISO 协议(即 BOSCH 协议)下,控制域和 CRC 域之间的填充位(即 CRC 域开头的第一个固定填充位 FSB),填充了一个 CRC 计算流中的一个值,这个值可能为 1 也可能 为 0,所以可能出错也可能不出错。

作为接收机时,使用 CANFD,在 ISO 协议下,接收 dlc=0 的 fd_data/ fd_ext_data 帧时,如果 stuffent 域的第一个固定填充位 FSB 出错,不会报错。

作为接收机时,使用 CANFD, 在非 ISO 协议下,接收 dlc=0 的 fd_data/ fd_ext_data 帧时,任何填充位出错都可以正常报错。

现象总结如下表:

帧类型	iso/niso	dlc	现象
fd_data	非 iso	dlc==0	仅发送端错误;接收端可检测错误,会报中断
fd_data	iso	dlc==0	发送端错误,接收端不检测, <mark>接收端不报中断</mark>
fd_ext_data	非 iso	dlc==0	仅发送端错误;接收端可检测错误,会报中断
fd_ext_data	iso	dlc==0	发送端错误,接收端不检测, <mark>接收端不报中断</mark>
fd_data	iso	任意	接收端不检测 stuffcnt 域的填充错误,接收端不报中断
fd_ext_data	iso	任意	接收端不检测 stuffcnt 域的填充错误,接收端不报中断

解决措施

作为发送机, CANFD 协议下,不要发送 DLC=0 的数据帧(也即不要发没有数据的数据帧,发送的数据帧要求 DLC 不等于 0)

1.1.2 CANFD 数据帧 BRS 使用限制 (适用于 B 版、C 版)

现象描述

外部节点发 FD 数据帧, brs=1(data/crc 域切换波特率), 在快速波特率阶段发生错误, 随后芯片或者外部节点发错误帧。

芯片发送错误帧或检测到了外部节点发送的错误帧时,芯片没有切换回慢速波特率。错误帧结束后,外部节点自动重发,由于芯片仍然保持在快速波特率,由于波特率不匹配,会很容易将外部节点发出的正常帧识别成填充错误,从而发错误帧,打断外部节点,进入死循环,直到 bus-off。

解决措施

建议在有干扰的情况下不要使用 FD 加速数据帧以及 FD 扩展加速数据帧。

1.1.3 CAN loopback 使用限制 (适用于 B 版、C 版)

现象描述

CAN loopback 模式下, 部分 ID 发送正常, 然后接收数据是乱码, 必须 release buf 才能读取; 部分 ID 发送正常,接收数据正常,但不会置起接收中断。

解决措施

不使用 CAN loopback 模式,或者仅使用 CAN loopback 发送功能。

1.1.4 CAN Rxbuffer 使用限制(适用于 B 版、C 版)

现象描述

Rxbuffer 未收到有效数据或有效数据被取走之后(配置 CAN_CTRL.RREL=1),此时 Rxbuffer 数据不定、当前节点发送的数据/接收但未被验收的数据、均会出现在 Rxbuffer 中,软件可以读取, Rxbuffer 收到有效数据之后、只有有效数据出现在 Rxbuffer 中、软件可以读取。

解决措施

软件在 Rxbuffer 未收到有效数据或有效数据被取走之后(配置 CAN_CTRL.RREL=1),不去 读取 Rxbuffer 数据,软件在收到有效数据后,可以读取有效数据。

1.1.5 CAN Txbuffer 使用限制 (适用于 B 版、C 版)

现象描述

CAN_TBUFID / CAN_TBUFCR / CAN_TBUFDTx 寄存器上电默认值为不定态,软件使用先读后写方式操作寄存器、可能导致写入不定态、影响预期功能。

解决措施

软件操作 CAN TBUFID / CAN TBUFCR / CAN TBUFDTx 寄存器时使用只写模式操作。

1.1.6 CAN ACF 使用限制 (适用于 B 版、C 版)

现象描述

CAN_ACFCTRL.ACFADR不等于0时,CAN_ACF寄存器上电默认值为不定态,软件使用先读后写方式操作寄存器、可能导致写入不定态、影响预期功能。

解决措施

CAN ACFCTRL.ACFADR 不等于 0 时,软件操作 CAN ACF 寄存器时使用只写模式操作。

1.1.7 CAN TX 使用限制 (适用于 B 版、C 版)

现象描述

CAN TX 请求发出后, TX 数据发到线上需要一定时间, 如果在 TX 数据发到线上之前收到 RX 数据, 那么这个 TX 请求可能会出错、发到线上的数据全部为无效数据。

解决措施

每次 TX 请求发起前,使用 CAN_CTRL.RESET 位复位 CAN (将 CAN_CTRL.RESET 位置 1, 延迟 10~20 个指令周期,将 CAN_CTRL.RESET 位置 0), 随后发起 TX 请求。

1.1.8 CAN 时钟使用限制(适用于 B 版、C 版)

现象描述

CAN 功能时钟和 APB 总线时钟频率相差不能太大、CAN 功能时钟频率不能低于 APB 总线时钟频率×1/3,假如不满足则 ACF 滤波会不符合预期

解决措施

配置 CAN 功能时钟、满足 CAN 功能时钟频率不低于总线时钟频率×1/3。

1.1.9 CAN 过载帧使用限制 (适用于 B 版、C 版)

现象描述

CAN 配置 STB 衔接 PTB 时(先发送 STB 再发送 PTB),假设 STB 帧末尾检测到过载帧,会认为衔接的 PTB 已经结束,从而不会发出 PTB 所配置的帧

解决措施

不建议 STB 衔接 PTB 使用、建议 STB 与 PTB 单独使用。

1.2 HRPWM 使用限制

1.2.1 HRPWM Burst-Mode 小驱动使用限制(适用于 B 版、C 版)

现象描述

HRPWM 在 Burst-Mode 下配置为周期值清零时,每次 Burst-Mode 开启前会多一个小驱动。

解决措施

HRPWM 在使用 Burst-Mode 下不使用周期值清零、使用比较值清零,清零比较值小于周期值减去 $7 \times f_{HRPWM}$ (CKPSC=0 对应 224,CKPSC=1 对应 112,CKPSC=2 对应 56)即可避免小脉冲的出现。

1.2.2 HRPWM 推挽+负死区功能 (适用于 B 版、C 版)

现象描述

使用推挽+负死区时,波形不符合正常的推挽+负死区预期波形。

解决措施

不使用推挽+负死区方式生成波形,使用其他方式生成波形。

1.2.3 HRPWM 均衡空闲功能限制 (适用于 B 版、C 版)

现象描述

均衡空闲模式下,均衡空闲运行中外部事件发生在计数为0时,无法生成预期波形

解决措施

保证均衡空闲运行中外部事件不发生在计数为0时,或不使用均衡空闲模式生成波形

1.2.4 HRPWM CR0 寄存器使用限制 (适用于 B 版、C 版)

现象描述

写入 HRPWM_CR0 寄存器前后假如不加入 NOP 延迟、预加载寄存器更新会存在异常、无法生成预期波形。

解决措施

写入 HRPWM_CR0 寄存器后加入 NOP 延迟(增加 5~6 条___NOP 语句)、随后操作预加载 寄存器、操作预加载寄存器后加入 NOP 延迟(增加 5~6 条 NOP 语句)。

1.2.5 HRPWM 更新事件使用限制(仅 B 版)

现象描述

HRPWM 使用更新事件作为 CLR 时,如果软件在 PWM 使能前执行软件更新动作,会将相应 OUTA/OUTB 变为有效电平、可能导致输出共通。

解决措施

软件执行软件更新动作之后,执行软件 CLR 动作将相应 OUTA/OUTB 变为无效电平。

1.2.6 HRPWM 复位事件使用限制(适用于 B 版、C 版)

现象描述

HRPWM使用软件/硬件复位事件时,如果复位事件正好在周期事件之后 1~2 个 pwm 时钟周期,内部会产生一小段错误逻辑,使得 CLR 信号被误用作 SET 信号、可能导致输出共通。

解决措施

使用软件/硬件复位事件时,注意复位事件时间点使得复位事件不发生在周期事件之后 1~2 个

pwm 时钟周期,比如使用事件消隐/加窗等机制。

1.2.7 HRPWM 推挽模式使用限制(适用于 B 版、C 版)

现象描述

HRPWM 使用推挽模式时,假设 PWMx 更新事件来源于 PWMy (Master PWM 与 Slave PWM, $y \neq x$),修改 PWMx 周期值有可能导致丢失周期事件、进而导致推挽逻辑错乱。

解决措施

使用推挽模式时,PWMx 更新来源于 PWMx 自身而非 PWMy(Master PWM 与 Slave PWM, y≠x),或者 PWMx 配置使能重同步更新(HRPWM PWMxCR0.RSYNCU)。

1.2.8 HRPWM MST 复位使用限制(适用于 B 版、C 版)

现象描述

HRPWM 使用 MST 复位 SLV 实现移相时, MST 周期值大于 SLV 周期值,则 SLV 输出波形有可能会受到 MST 复位影响抖动变大。

解决措施

HRPWM 使用 MST 复位 SLV 实现移相,需要保证 MST 周期值等于 SLV 周期值

1.2.9 HRPWM Burst Mode 使用限制(适用于 B 版、C 版)

现象描述

HRPWM Burst Mode 不建议与 OEN/ODIS 一起使用,假如在 Burst Mode 中途使用 OEN/ODIS,会导致 Burst Mode 功能不合预期。

解决措施

HRPWM Burst Mode 功能不建议与 OEN/ODIS 一起使用

1.2.10 HRPWM PA8/PA9 引脚使用限制 (适用于 B 版、C 版)

现象描述

PA8/PA9 脚配置成内部下拉或者是配置成浮空状态下,在上电到 HRPWM 模块初始化完成到发波阶段,会出现一个持续几百 ns 的方波

解决措施

- 1. 在切换 PINMUX 为 PWM 输出前, 先配置 GPIO 为输出低电平
- 2. 片外挂下拉电阻

1.3 ADC 使用限制

1.3.1 ADC 降频配置限制(适用于 B 版、C 版)

现象描述

ADC 时钟配置为降频(<60M),对部分寄存器连续进行多次配置(如连写两次 ADCx_CR),有些配置可能无法生效,必须在每一步配置之间增加延迟;涉及寄存器包括 ADCx_CR、ADCx_CFGR0、ADCx_CFGR1、ADCx_LR、ADCx_JLR、ADCx_CCR。

解决措施

ADC 时钟配置为降频(<60M)时,完成每一步配置之后延迟 1us 进行下一步配置

1.3.2 ADC 校准数据上饱和限制(适用于 B 版、C 版)

现象描述

ADC 在进行第一级校准之后、数据仅做下饱和没做上饱和,数据不会小于 0 但有可能会超过8191,需要软件进行限制。

解决措施

对于 ADC 校准数据使用软件进行上饱和。

1.3.3 ADC 模拟看门狗限制 (适用于 B 版、C 版)

现象描述

开启模拟看门狗滤波,当某个模拟看门狗输出为高时,仅考虑不超过阈值的转换,当某个模拟看门狗输出为低时,仅考虑超过阈值的转换,以上现象不符合预期

解决措施

不开启模拟看门狗滤波功能

1.4 UART 使用限制

1.4.1 UART 启动时使用限制(适用于 B 版、C 版)

现象描述

UART 模块配置模块使能(UE=1)后,TX 输出高电平(空闲),如果立即开始发送数据,START 前的空闲时间会小于 STOP 位的宽度。此时 RX 如果接收这个信号,第一帧将会识别为帧错误 (START 前没有检测到空闲状态)。具体表现为,UART 启动前,TX 线处于不定态(可能是 0,可能是 1),为 0 时,如果接收端提前启动会认为 UART 已经启动,这一段 0 被认为是 BREAK 信号,而 BREAK 信号后到发送 START 信号之间的 IDLE 状态长度是由 TX 启动的 CPU 指令时长决定,但是在 5800 的 UART 中,需要保证 IDLE 状态有 1 个波特率时钟,这样才能检测

到有效的 START 信号。

解决措施

在 UART 初始化时, TE 使能后,同时发起 IDLE 帧。

1.4.2 UART 单线模式使用限制 (适用于 B 版、C 版)

现象描述

UART 单线模式无法做到 TX/RX 同时使能时自动切换传输模式、仅使能 TX 或 RX 时硬件行为不符合预期

解决措施

不使用单线模式进行传输、使用其他方式实现单线功能

版本历史

日期	版本	版本记录		
2023/6/19	V1.0	初始版本		
2023/7/24	V1.1	增加 1.2.6 HRPWM 更新事件使用限制		
2022/8/0	V1.2	增加 1.2.7 HRPWM 复位事件使用限制		
2023/8/9		更新 1.4 UART 使用限制描述		
2023/8/16	V1.3	增加 1.2.8 HRPWM 推挽模式使用限制		
2023/8/24	V1.4	增加 1.1.2 CAN loopback 使用限制		
		更改"1.1.1 CANFD 数据帧的使用限制"为"1.1.1 CANFD 数据帧		
		DLC 使用限制"		
2023/9/6	V1.5	增加 1.1.2 CANFD 数据帧 BRS 使用限制		
		增加 1.1.4 CAN Rxbuffer 使用限制		
		更新 1.3.1 ADC 降频配置限制描述		
	V1.6	增加 1.1.5 CAN Txbuffer 使用限制		
2023/9/22		增加 1.1.6 CAN ACF 使用限制		
2023/9/22		增加 1.2.9 HRPWM MST 复位使用限制		
		更新 1.1.4 CAN Rxbuffer 使用限制		
	V1.7	增加 1.1.7 CAN TX 使用限制		
2023/10/10		增加 1.1.8 CAN 时钟使用限制		
		增加 1.2.10 HRPWM Burst Mode 使用限制		
2023/11/7	V1.8	更新 1.3.1 ADC 降频配置限制描述		
2023/11/8	V1.9	在每个具体使用限制后写明版本信息		
		删除 1.2.2 HRPWM 单次模式使用限制		
		更新 1.2.3 HRPWM 均衡空闲功能限制		
	V1.10	增加 1.1.9 CAN 过载帧使用限制		
2024/2/20		更新 1.1.1CANFD 数据帧 DLC 使用限制		
202 4 /2/20		更新 1.3.3ADC 模拟看门狗限制		
		更新 1.1.3 CAN loopback 使用限制		
2024/2/22	V1.11	增加 1.4.2UART 单线模式使用限制		
2024/4/15	V1.12	增加 1.2.10HRPWM PA8/PA9 引脚使用限制		